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First-order perturbation treatment and the new hard sphere equation of state are applied to the 
calculation of !l.H E, !l.GE, and T!l.SE of seven binary mixtures: Ar-Nz' Ar-02' Ar-CO, 
Ar-CH4' Co-CH4, CSH lO-CCI4, and CCI4-C6 H 12• Results are compared with the ex
perimental data and with the values from the similar treatment where the scaled particle theory 
equation of state was used. 

Perturbation theory of pure fiuids 1 ,2 was found to give a reliable estimation of the properties 
of liquids, when precise enough description of the hard sphere system was available. In previous 
communication3 the perturbation method was applied to the mixture of cyclopentane and carbon 
tetrachloride. Only the first-order terms in the perturbation treatment were retained to avoid 
complexity of the relations; the hard sphere equati9n of state and the radial distribution function 
from the scaled particle theory (hereinafter referred as SPT)4 were used in that calculation. 

Recently Carnahan and Starling proposed a new hard sphere equation of state for pure fiuids 5 

that was in a better agreement with the Monte-Carlo data than the SPT-relation (which is identical 
with the Percus-Yevick (c) equation). The equation was extended for mixtures6 of hard spheres 
and relations for the radial distribution functions of the hard spheres at closest approach were 
obtained. 

The effect of an improvement in the description of the hard-sphere behavior 
on the estimation of the excess functions (within first-order perturbation theory) 
is followed in this paper on the binary systems of simple, roughly spherical molecules. 

THEORETICAL 

Exploiting the idea of the thermodynamic cycle where "charging" and "discharging" 
of the hard spheres by assumed intermolecular potential occurs 7 , the following 
relations for the excess entropy and the energy change associated witQ, mixing the 
pure components at constant temperature Tand pressure P can be found: 

collection Czechoslov. Chem. Commun. IVol. 361 (1971) 



2084 Boublik: 

~SE = (Ss - S~) - ~Xi(Si - Sn + (ljT) [ LXi f::P? dV - f:~·p~ dVJ' 

flUE = (Us - U~) - I>i(u1 - Un . 
i 

(2) 

The superscript zero denotes the hard-sphere system, asterisk the perfect gas system 
(where P*V* = RT), and the superscript s a function of the solution with the com
position given by the mole fractions Xi. 

In the first-order perturbation treatment the "charging" entropy (i.e. the difference 
between entropy for assumed pair potential and the hard-sphere value) for both the 
pure component and the solution vanishes; the "discharging" energy is just equal 
to the cohesion energy ~U~O\ 

(3) 

(4) 

The excess entropy can be calculated from the given type of the hard sphere equation 
of state for pure components and mixture. Here the relations 

p?V = 1 + Yi + Y~ - Y~ 
NkT (1 - Yi)3 

(5) 

and 

(6) 

were used for pure components and mixture respectively .. N is Avogadro number 
and the variables Yi and ~m are defined by the relations 

Yi = (1tNj6V) (2Ri)3 , 

~m = (1tNj6V) Lxi(2R i )m , 

(7) 

(8) 

where Ri is the radius of the reference hard sphere. Substituting Eqs (7), (8) and (3), 
in the relation (1) we can obtain the final expression for the excess entropy 
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Similarly as in the SPT only the values of the radial distribution function at closest 
approach are known for the used type of equations of state: 

( ) 
1 3 Yi 1 yf 

G·· 1 =--- + ---- + ----
II (1 - Yi) 2 (1 - Yj)2 2 (1 - y;)3 

(10) 

and 

G.'(I) = __ 1_ + 6R;R j __ ~2_ + 8R~Rf ~~ (11) 
1) (1 _ ~3) (Rj + R j ) (1 - ~3)2 (Rj + R j )2 (1 - ~3)3 ' 

where G;j(l) = gjiRj + Rl 

Because of this limitation it is assumed that molecules interact according to the 
simple square-well potential model, 

00 for 

o 

r < (Rj + R j ) 

(R; + R j ) < r < (Rj + R j ) + a 

r > (R; + R j ) + a , 

(12) 

where the distance a is the same for every species and so small that the radial distribu
tion function in this range is constant and equal to G(l) and the integral in the 
expression for the cohesion energy (and ~UE) can be approximated as follows 

(13) 

Under mentioned assumptions ~UE can be calculated from the expression 

~UE = "x. ~U? _ 21tN ""x.x.w .. {(R j + Rj )2 + 
RT 7" 1 RT Vs 7"i' 1 J lJ (1 - ~3) 

+ 6R jRj (R; + R j ) ~2 + 8R~Rt~~} 
(1 - ~3)2 (1 - ~3)3 ' 

(14) 

where 

and 

~U? = 21tN w .. (2R.)2 {_1_ + ~ __ Y;_ + ~~} (15) 
RT V; 11 1 (1 - Yi) 2 (1 - y;)2 2 (1 - y;)3 . 

First-order perturbation theory (together with the special kind of square-well poten-
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tial) fails to predict the P- V- T behavior of liquid precisely enough. For this reason 
the expression for AVE is not given. 
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FIG. 1 

Comparison of the Calculated and Smoothed Experimental Excess Thermodynamic Functions 
a Argon-nitrogen at -189'33°C; b argon-oxygen at -189'33°C; c argon-<:arbon monoxide 

at -19Q·QQoC; d argon-methane at -181'95°C; e carbon monoxide-methane at -182'48°C; 
f cyclopentane-carbon tetrachloride at 25'QOoC; 9 carbon tetrachloride-cyclohexane at 25·QQoC. 
1, 2, 3 calculated ll.HE, ll.GE and T ll.SE functions, resp.; 1', 2', 3' corresponding experimental 
functions. 
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TABLE I 

Excess Thermodynamic Functions of Equimolar Mixtures from the Scaled Particle Theory and 
this Work 

Source of data !J.HE !J.GE, Jimol 

argon-nitrogen, - 189'33°C 

Exptl. 50·52 34'36 
SPT 64·86 44·56 
This work 65·74 45-37 

argon-oxygen, 189'33°C 

Exptl. 59·83 37·08 
SPT 86·27 59·26 
This work 83·05 56·80 

argon-carbon monoxide, -180·00°C 

Exptl. 
SPT 
This work 

Exptl. 
SPT 
This work 

56·48 
127·90 
126·02 

56·65 
85·00 
83 '53 

argon-methane, -181'95°C 

102-90 
170'63 
166·52 

74·72 
124·51 
121-49 

T!J.SE 

16' 16 
20'29 
20·37 

22'75 
27·01 
26'25 

- 0·17 
42·90 
42·49 

28 ·18 
46·12 
45·03 

carbon monoxide-methane, -182'48°C 

Exptl. 
SPT 
This work 

106'17 
123046 
125'50 

117·17 
113·40 
115-40 

-11,00 
10·07 
10·10 

cyclopentane-carbon tetrachloride, 25·00°C 

Exptl. 
SPT 
This work 

77'14 
25·92 
27-26 

34·08 
23·72 
24·93 

43·06 
2·20 
2·34 

cyclohexane-carbon tetrachloride, 25'00°C 

Exptl. 
SPT 
This work 

148·00 
215·50 
210·27 

69'78 
143042 
139'73 

78·22 
72·08 
70'54 
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NUMERICAL CALCULATIONS 

Excess functions ABE, ACE, and T ASE were calculated from Eqs (9), (15), (16), and (17) 

ABE = A UE + PAVE, 

ACE = ABE- TASE. 

2089 

(16) 

(17) 

for seven binary mixtures, formed by simple-molecule liquids, exploiting molar volumes, calcul
ated from densities given in the literature and molecular parameters determined from the rela
tions (15) and (18) for the cohesion energy and vaporization entropy of pure components 

(18) 

where AB'( is the vaporization heat, prat the vapor pressure and Bii the second virial coefficient 
of the component i. . 

The mentioned determination of parameters Ri and wi i from the properties of pure components 
is necessary because for the used type of square-well potential the parameters are unknown 
even for the common compounds. Moreover it is believed that the errors due to the limitation 
of the (first-order) perturbation theory and due to the special kind of the potential compensate 
themselves to great deal. Heats of vaporization were calculated from the Antoine vapor pressure 
equation at given temperature and the cohesion energies from the relation (19) 

(19) 

For the cross-terms wii the combining rule 

(20) 

was used. 
In Fig. 1 the comparison is given of the calculated and experimental8 excess thermodynamic 

functions ABE, ACE, and T ASE for binary system argon-nitrogen at -189'33°C, argon-oxygen 
(-189'33°C), argon-carbon monoxide (-19Q'OQ°C), argon-methane (-181'95°C), carbon 
monoxide-methane (-182'48°C), cyc1opentane-carbon tetrachloride (25'OQ°C), and carbon 
tetrachloride-cyc1ohexane (25·QQ°C). Experimental values are given in full lines, theoretical 
in broken lines. Values of the excess functions at mole fraction xl = 0·5 are listed in the Table I. 

DISCUSSION 

From Fig. 1 and Table I it follows that the used hard sphere equation of state to
gether with the first order perturbation treatment give a fair estimation of the excess 
functions AGE, HE and T ASE for the mixtures of simple molecules. The agreement 
is worse for the non-spherical, complex molecules. This conclusion is valid both 
for the SPT - and the here discussed treatment. Only moderate improvement in the 
estimation of the thermodynamic functions of real systems results when more precise 
hard sphere equation of state (and the contact distribution function) is used. The 
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main sources of the discrepancies are the unsufficient model of pair interactions, 
the semiempirical mixing rule for Wlj' the limitation of the perturbation relations 
to the first-order terms only, and the inaccuracy in the determination of molecular 
parameters. 

Advantages of the proposed method remain the simplicity of the derived relations, 
the small number of parameters, determined from densities and the vapor pressure 
equations of pure components, and the fact that no parameter adjustable to thermo
dynamic functions of the solution is present. 
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